ELECTROCHEMICAL S-S BOND FISSION OF 4-(2-BENZOTHIAZOLYLDITHIO)AZETIDINONES (KAMIYA'S DISULFIDES) 1)

Sigeru TORII,* Hideo TANAKA, Takashi SIROI, Michio SASAOKA, Norio SAITOH,

Junzo NOKAMI, † and Nobuhito TADA †

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700 Okayama University of Science, Ridai, Okayama 700

An electrochemical S-S bond fission of 4-(2-benzothiazolyl-dithio)azetidinones derived from penicillin G has been achieved by the selection of an appropriate electrolysis system, providing either 2β -halomethylpenicillins, 3β -halocephams, or 4-methoxy-sulfinylazetidinone derivatives.

In connection with penicillin-cephalosporin conversion, disulfides $\underline{1}$, readily accesible from natural penicillins by Kamiya's method, ^{2a)} are one of most actively investigated intermediates. ²⁾ Namely, the disulfides $\underline{1}$ can be converted by the action with bromine or CuCl₂ in CH₂Cl₂ to the corresponding 2β -halomethylpenicillins $\underline{2}$ (X = Br, Cl), which are a good precursor of useful cephalosporin antibiotics. ²⁾

Recently, an alternative procedure of the S-S bond fission of $\underline{1}$ by the electrolysis in a $(CH_3)_4 NBr-C1CH_2 COOH$ -aqueous $CH_3 CN$ (Pt electrodes) system has been reported. This electrolysis system provides 3β -bromocepham $\underline{3}$ (X = Br, 18-45%) along with a small amount of deacetoxycephalosporins $\underline{4}$ after

Scheme 1

R¹CNH S-S-BT
$$X^{+}$$
 X^{-} X^{-}

isomerization of the primary products $\underline{2}$ (X = Br) on the chromatographic purification. This prompted us to report our distinguishable results on the electrolytic S-S bond cleavage of the disulfides $\underline{1}$, leading to halopenicillins $\underline{2}$ (X = Br, Cl), halocephams $\underline{3}$ (X = Br, I), and/or 4-methoxysulfinylazetidinone $\underline{7}$, respectively. $\underline{5}$)

The electrolysis was carried out in an undivided cell fitted with two Pt electrodes (1.5 × 2 cm²). A typical electrolysis procedure (entry 1 in the Table) is as follows: A solution of the disulfide \underline{la} (R¹ = PhCH₂, R² = CH₃, 86 mg, 0.17 mmol) and MgBr₂ (85 mg, 0.19 mmol) in CH₃CN (6 ml), tetrahydrofuran (THF, 1.5 ml) and H₂O (0.3 ml) was electrolyzed at 10 mA/cm² at 23-25 °C. After passage of 4 F/mol of electricity (35 min), the usual workup followed by column chromatography (SiO₂, benzene/AcOEt: 5/1) yielded $\underline{2a}$ (R¹ = PhCH₂, R² = CH₃, X = Br, 52%) and $\underline{3a}$ (R¹ = PhCH₂, R² = CH₃, X = Br, 44%) along with bis (2-benzothiazolyl) disulfide (31 mg). Some of the results together with the electrolysis conditions are summarized in the Table.

Among various kinds of bromide salts, MgBr $_2$ was the most effective one for this purpose. Thus, use of alkaline metal salts, e.g., LiBr, NaBr, and KBr or HBr in place of MgBr $_2$ afforded a mixture of 2a and 3a in 73-46% yields (entries 2-5), while ammonium bromides are ineffective, affording only dimer 6 and/or decomposition products (entries 6 and 7). In contrast to the reported results, electrolysis of 1a with MgCl $_2$ in the same medium brought about the exclusive formation of the corresponding chloropenicillin 2b (R 1 = PhCH $_2$, R 2 = CH $_3$, X = Cl) (entry 8). However, iodide salts, e.g., MgI $_2$ and NaI are less effective, leading to a small amount of iodocepham 3c (R 1 = PhCH $_2$, R 2 = CH $_3$, X = I, < 20%) along with dimer 6 (26-41%) (entries 9 and 10). Interestingly, the electrolytic conversion of 1a to 2b could be achieved by using two-phase electrolysis system, comprising aqueous chloride salts and CH $_2$ Cl $_2$ (entries 11 and 12). Similar attempts with bromide salts and iodide salts in the two-phase electrolysis system failed (entries 13 and 14).

Apparently, the product ratio of halopenicillins 2 to halocepham 3 varied remarkably depending on the choice of halide salts as well as the electrolysis conditions. The ratio of 2a to 3a (X = Br) was also affected by the employed temperature as follows: temperature, 2a/3a (total yields): 23-25 °C, 54/46 (96%); 5-9 °C, 80/20 (100%); -3~-5 °C, 88/12 (90%). The results so far obtained suggest that in the initial stage of the electrolysis, kinetically favored halopenicillins 2 (X = Br, Cl, and I) are formed via episulfonium ion 9 (Scheme 2) by the action with the anodically generated X^+ or X_2 (X = Br, Cl, and I) in a similar fashion to the reported chemical conversion. ²a) Then, the isomerization of 2 (X = Br and I), having a good leaving group at the C-2' position, to $\underline{\mathbf{3}}$ would take place in the electrolysis media and partly under the workup However, the chloropenicillin $\underline{2b}$ (X = C1) would be stable enough in the electrolysis media to be recovered intact. The transformation of 2a (X = Br) into 3a could be performed by standing in N,N-dimethylformamide (DMF) at room temperature overnight and subsequent chromatography on a Al₂O₃ column with benzene/AcOEt (1/1) afforded deacetoxycephalosporin $\frac{4}{2}$ (R¹ = PhCH₂, R² = CH₃,

Table Electrolysis of Disulfide \underline{la} (R¹ = PhCH₂, R² = CH₃) with Halide Salts^{a)}

h) a)						
entry	halide salt ^{b)}	solvents ^{c)}	Products, yields % ^{d)}			
			$\frac{2}{2} + \frac{3}{3} (\frac{2}{3})$	<u>5</u>	<u>6</u>	<u>1</u>
1	MgBr ₂	A	96 (54/46)			
2	LiBr	A	73 (38/62)			18
3	NaBr	A	74 (35/65)			22
4	KBr	A	58 (50/50)		25	21
5	HBr	A	46 (65/31)			14
6	$\mathtt{Et_{ extit{4}}}\mathtt{NBr}$	A				15
7	NH ₄ Br	A			52	32
8	MgCl ₂	А	66 (100/0)			15
9	NaI	А	20 (0/100)		41	14
10	MgI ₂	A	trace		26	68
11	NaCl	В	72 (100/0)	5		26
12	MgCl ₂	В	65 (100/0)			30
13	NaBr	В				90
14	NaI	В				100

a) Carried out at 10 mA/cm², passing 4 F/mol of electricity, at 23-27 °C. b) A stoichiometric amount of halide salts was added. c) A: ${\rm CH_3CN/THF/H_2O}$ (6/1.5/0.3); B: ${\rm CH_2Cl_2/H_2O}$ (5/3); d) Isolated yields after column chromatography (SiO₂, benzene/AcOEt: 5/1).

95%).

With regard to the isomerization (2 + 9 + 3) in the aqueous medium, it is notable that the solvolyzed products 8 (Nu = OH and NHCOCH₃) could not be detected, which are expected to be generated by the attack of the solvents to 9.2^{2b}) Several attempts to trap the intermediate 9 by using aqueous or protic solvents, e.g., aqueous acetone, aqueous THF, aqueous DMF, and methanol, failed, but the electrolysis of 10.2^{2b} (0.4 ml) afforded 4-methoxysulfinylazetidinone 10.2^{2b} (0.4 ml) afforded

References

- 1) Penicillin-Cephalosporin Conversion V.
- (a) T. Kamiya, T. Teraji, Y. Saitoh, M. Hashimoto, O. Nakaguchi, and T. Oku, Tetrahedron Lett., 3001 (1973); (b) Y. Hamashima, S. Yamamoto, S. Uyeo, M. Yoshioka, M. Murakami, H. Ona, Y. Nishitani, and W. Nagata, ibid., 2595 (1979); (c) R. G. Micetich and R. B. Morin, "Recent Advances in the Chemistry of β-lactam Antibiotics", Ed. by J. Elks, Chem. Soc. Burlington House, London, 1977, p. 232; (d) "Topics in Antibiotic Chemistry", Vol. 4, Ed. by P. G. Sammes, John Wiley & Sons, N. Y., 1980, and references cited therein.
- 3) (a) A. Balsamo, P. Benedini, I. Giorgi, B. Macchia, and F. Macchia, Tetrahedron Lett., 23, 2991 (1982); (b) Details on the S-S bond fission by the halide salts promoted electrolysis have been already discussed: S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., 44, 1554 (1979); S. Torii, N. Sayo, and H. Tanaka, Tetrahedron Lett., 4471 (1979).
- 4) Although they have experienced some difficulties on the isolation of the intermediates $\underline{2}$, we could obtained $\underline{2}$ (R¹ = PhCH₂, R² = CH₃, X = Br and C1) smoothly after column chromatography on SiO₂. They have confirmed their intermediates $\underline{2}$ by the transformation into the corresponding S-oxides (see ref. 3a).
- 5) The outline of this work has been presented by T. S. at the 45th annual meeting of Chem. Soc. Jpn. in Tokyo, on April 4. 1982: The Abstracts of Papers, Vol. 2, p. 1033.
- 6) Similar results have been obtained in the electrolysis of $\underline{1}$ in a (CH₃)₄NBr-aqueous CH₃CN system (see ref. 3a).
- 7) The electrolytic conversion of $\underline{1}$ into chloropenicillins $\underline{2}$ (X = Cl) has been attempted by using chloride salts, but has not yet been realized (see ref. 3a).
- 8) The electrolytic ene-type chlorination of 7 proceeded smoothly to give a potent intermediate (i). Further transformation of (i) into useful β-lactam antibiotics is under progress.
 R¹ CNH S-OCH3

$$\begin{array}{c|c} \mathbf{R}^1 \overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{$$